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Field Fluctuation Spectroscopy in a Reverberant Cavity with Moving Scatterers
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We report a study of transient ultrasonic waves inside a reverberant cavity containing moving
scatterers. We show that the elastic mean free path and the dynamics of the scatterers govern the
evolution of the autocorrelation of acoustic wave field. A parallel is established between these results
and a closely related technique, diffusing acoustic wave spectroscopy. Excellent agreement is found
between experiment and theory for a moving stainless steel ball in a water tank, thereby elucidating the
underlying physics, and a potential application, fish monitoring inside aquariums, is demonstrated.
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The propagation of waves in complex media has at-
tracted renewed interest over the past two decades. Many
studies have focused on wave phenomena associated with
strong multiple scattering and their interpretation based
on the diffusion approximation [1]. This has led to the
development of new techniques to probe diffusive media
where traditional methods based on the single scattering
approximation fail. For example, diffusing wave spec-
troscopy (DWS) in optics [2,3] and diffusing acoustic
wave spectroscopy (DAWS) in acoustics [4] have shown
how the dynamics of moving scatterers can be measured
from the fluctuations of the multiply scattered intensity
and field. Another family of complex propagation phe-
nomena is being extensively studied in closed cavities
with reverberant boundaries (quantum dots, chaotic bil-
liards, reverberant rooms,...). In such media, the wave
field is ““diffuse” for an entirely different reason: because
of multiple reflections at the boundaries, the wave field
fills the cavity and becomes isotropic and homogeneous
on average. Thus, the field is diffuse in the sense of room
acoustics theory [5]. When the medium inside the cavity
is heterogeneous, waves can be both scattered from the
inhomogeneities and reflected by the boundaries, leading
to a rich interplay of multiple scattering and multiple
reflection effects even when the scattering is relatively
weak [6]. However, when the scatters are static, it is
difficult to unravel this interplay, as the wave propagation
differences between an empty cavity and one filled with
weak scatterers can be very small. This observation mo-
tivates a question that has not been addressed previously
apart from one preliminary study [7]: what happens when
the scatterers inside a reverberant cavity are moving? The
answer to this question is potentially important, not only
because it may provide a new way of learning about the
mixing of two kinds of wave physics, but also because it
could lead to a new way of probing the dynamics of
scatterers in complex media.

In this Letter, we address this problem experimentally
and theoretically using ultrasonic waves. Unlike DAWS,
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the experiments are conducted in a reverberant water
tank containing relatively few scatterers, so that the
mean free path is large compared to the cavity dimen-
sions. In this regime, we show that the diffuse nature of
the wave field due to boundary reflections allows wave
scattering to be described in relatively simple terms: the
energy transfer between the different scattering orders is
a Markoff-Poisson process that depends on the elastic
mean free time. Furthermore, the fact that the spatial
correlations of the wave field are governed by the cavity
and not by the scatterers allows a simple form for the field
autocorrelation function to be derived. We show that the
autocorrelation depends on both the scattering mean free
path and the dynamics of the scatterers, opening up a new
technique in field fluctuation spectroscopy which we call
diffusing reverberant acoustic wave spectroscopy. The
sensitivity of the technique to scatterer motion is gov-
erned by the condition that the autocorrelation reaches its
minimum when the scatterers have moved by A//m,
where A is the wavelength and m is the scattering order.
These predictions are demonstrated experimentally
through a series of experiments in which the motion of
a stainless steel ball inside a water tank is fully controlled
by stepping motors. Excellent agreement is found between
theory and experiment both for measurements of the
mean free path and for the autocorrelation evolution for
two different kinds of motion: ballistic (straight trajecto-
ries) and diffusive (random walks). Finally, we discuss a
potential application: fish monitoring inside an aquarium.

In a reverberant cavity with scatterers, the time depen-
dence of the pressure wave field, ¢ (), can be decomposed
into an infinite sum of ¢,,(t) wave fields. Here ¢,,(r)
represents the wave field which is scattered m times,
and ¢ is the propagation time of the wave after its emission
from the source (at # = 0). As explained above, the fields
¢,,(1) are diffuse. In this case, the mean energy density
(€,,) of the mth scattered wave field is equal to (¢2,)/poc?,
where c is the sound speed and p, is the mass density of
the propagation medium. Here we assume that the cloud
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of scatterers is dilute, and, therefore, there is no correla-
tion between the fields scattered by the different particles.
Between times ¢ and r + dt, the total energy V{e,,) de-
creases by N(e,)ocdr due to scattering by the N scat-
terers, where o is the total elastic scattering cross section
and V is the volume of the cavity. At the same time, for
wave fields scattered at least once, V{(g,,) increases by
N(e,,_)ocdr due to the contribution of the (m — 1)th
scattered fields. In terms of mean squared fields, a
Kolmogoroff set of equations is obtained:

dp}(1))/dt = —(p}(1))/ 7,
APz, (0)/dt = (P2, (1)) — (P2 ()] T,

m=1,
()

where the time 7, is equal to V/Noc. This set of equa-
tions is characteristic of a Markoff-Poisson process,
whose solution (2 (1)) is <¢0(0))e_’/7 (t/7,)"/m!. Note
that the total intensity that is not scattered, ($3(7)), is
simply equal to (¢3(0))e ~"/"s and decreases exponentially
with distance traveled according to the magnitude of
the elastic scattering mean free path, €, ({;, = c7y).
Moreover, the fraction of the wave field that has been
scattered m times, (¢2,(1))/{$3(0)), is a maximum at the
time t = m7,. When the incident field is pulsed, the
evolution of the field due to the motion of the scatterers
can be observed, at all propagation times ¢, by measuring
the transient fields on subsequent repetitions of the pulse.
Thus, the influence of the motion of the scatterers on the
autocorrelation of the field, (¢} (r)p"2K()), can be de-
termined at any propagation time r. Here ¢!"1}(r) and
¢2}(r) are the transient pressure fields at times 7 and
T,. Since the time scale of acoustic wave propagation ¢ is
much faster than the time scale for the scatterers to move
a detectable distance, AT =T, — T, (i.e., low Mach
number), the medium can be considered ‘““frozen” for
all 7, as in DAWS and DWS. Then {(¢71}(r)¢{"2}(r)) can
be rewritten as (% (r)!2TH(r)), and the dependence of
the autocorrelation function on acoustic propagation time
t and scatterer motion time AT become decoupled.
Moreover, between two scattering events, the wave field
is completely randomized by multiple reflections at the
cavity boundaries, so that the scattered pressure fields for
different m are uncorrelated, i.e., (¢,,®,,1) = 0. Hence,

OO0 = S BP0 @
m=0

Generally speaking, the calculation of each term of the
right-hand side of Eq. (2) is quite complex. However, it
can be shown that for a single moving scatterer the
normalized autocorrelation function of the mth scattered

field, g™ (AT) = (pIH (D) P (1)) /(B2 (1), is

¢™(AT) = jo Y APy (ANdAr. (3)
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Here P,r(Ar) is the probability for one particle to move
by Ar within time AT, and C(Ar) is the normalized
spatial autocorrelation function of the wave field that is
scattered once. It is well known in room acoustics and
wave chaos that the spatial autocorrelation of a field with
wave number k in the diffusive regime is given by
sin(kAr)/kAr [8]. Hence, C(Ar) is equal to sinc?(kAr).
The square accounts for the double process involved for
one scattering event: reception and emission. In Eq. (3),
C(Ar) is raised to the mth power since the wave field is
decorrelated by the factor C(Ar) for each scattering event.
Notice also that g1 J(AT) = 1 for m = 0. Finally, the
normalized correlation function of the complete wave

field, g (AT) = (1) AT (1)) /(p (1)), is

@/z )"

A7) = et 14 S5, gan | @

Hence, for a fixed propagation time or path length of
the diffusing sound in the cavity, the autocorrelation
function is composed of a constant term, et/ s and
additional terms that decrease with the scatterer dis-
placement w1th1n AT. Moreover, the characteristic decay
time of gl J(AT) at fixed ¢ is the time needed for the
particles to move by roughly 1/k\/m [since C"™(Ar) =
exp(—mk?>Ar?/3)]. Until now, absorption has not been
considered. However as in DAWS, absorption does not
contribute to g1 )(AT) for measurements at fixed ¢, as its
effects cancel out in the normalization of the autocorre-
lation function.

In order to definitively test this model of the transient
behavior of the wave fields, experiments were set up in
which the scatterer motion was completely controlled.
The reverberant cavity was a thin stainless steel tank
filled with about 1.6 liters of water. Bumps were made
on the cavity boundary to quickly spread the wave over
the entire cavity volume and reach a diffuse regime. The
emitter and the receiver were 400 kHz transducers with
a 30% bandwidth. The scatterer was a stainless steel
19-mm-diameter sphere, which was immersed in the
water and attached to a two-axis stepping motor system
located above the water surface. Thanks to the stepping
motors, the ball trajectory could be decomposed into
small straight segments. A typical experiment was per-
formed as follows. Here a straight (or ballistic) trajectory
is illustrated: all the small straight segments were
aligned. The length of a segment was 200 wm and there
were 49 segments. Between adjacent segments, the tran-
sient field ¢("(r) was recorded. For convenience, the time
AT has been replaced by the segment index 1 (0 < n <
49). In order to have an accurate measurement of the
autocorrelation, the ¢ (¢) " (r) product was integrated
over a small propagation time window (the window width
was 100 ws, which is short compared to the 1 ms mean
free time). Moreover, the measurements were averaged
over ten different trajectories, where for each trajectory,
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FIG. 1. Six evolutions of the correlation function with respect
to n (segment number) for ballistic motion of a 19-mm-
diameter ball (solid curves, experiment; dot-dashed curves,
theory). The segment length was 0.2 mm.

the origin of the ball (position at n = 0) and the initial
displacement direction were chosen at random. The nor-
malized autocorrelation functions are plotted in Fig. 1.
As expected, the correlation is the sum of two contribu-
tions: a constant plateau (due to the unscattered wave
field) and decreasing terms (related to the ball displace-
ment). The plateau level decreases with ¢.

First, we focus briefly on the plateau. In order to have a
better estimation of the plateau level, the autocorrelation
was measured from 100 positions of the 19-mm-diameter
ball for which the distance between two positions was
larger than 10 mm. As predicted theoretically, a nice
decreasing exponential is found (see Fig. 2). The experi-
ments were repeated with two other balls having diame-
ters of 17 and 25 mm, respectively. From the slopes, the
mean free paths and total cross sections were deduced
(see Table I) . The experimental cross sections correspond
well to theoretical predictions [9]. Demer et al have
extended this study to the frequency dependence of the
total cross section [9].

log(plateau level)

propagation time(ms)

FIG. 2. Evolution of the plateau level with propagation time ¢
for the 19-mm-diameter ball (continuous line). The dashed line
represents an exponential fit.
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TABLE I. Comparison between experimental and theoretical
total cross sections for stainless balls of different diameters.
Ball diam. (mm) 17 19 25
Exp. mean free path (m) 4.53 3.18 1.86
o, exp. (mm?) 353 510 860
o, theor. (mm?) 370 500 865

Next, we focus on the dynamic part of the autocorre-
lation. In order to better resolve the decay of the auto-
correlation function, an experiment was performed
with the 19-mm-diameter ball using a shorter 40 um
segment length (see Fig. 3). For ballistic motion with
segment lengths dx [P,(Ar) = 8(Ar — néx)], Eq. (3)
gives g, )(n) = exp(— mi? 1*6x?/3). Substituting this
expression into Eq. (4) gives the dot-dashed curves in
Figs. 1 and 3 (left side), in very good agreement with the
experimental results. The opposite of ballistic motion is a
random walk. Here, due to the two-axis motors, the
random walk was investigated experimentally in two
dimensions. The random walk consisted of 49 segments,
each 0.2 mm long, with the directions of all the segments
picked at random. A 2D random walk is a diffusive
motion with a diffusion constant D equal to 8x>/4. In
this case, Eq. (3) gives 1/(1 + 4mk>?Dn/3). Again when
this result is substituted in Eq. (4) and summed over all m,
very good agreement is found between theory and experi-
ment, as shown in the right side of Fig. 3.

An important parameter is the characteristic width,

, of g®(m). w,, decreases faster for diffusive motion
(w17 ~ 1/mk’*D) than for ballistic motion (w, =~ 1/
k&x+/m). This behavior is clearly observed in the experi-
mental results (see Fig. 4).

To illustrate one of the many possible applications of
these results, we show how they can be used to monitor
fish inside an aquarium. Here the fish are the moving
scatterers and the aquarium is the reverberant cavity. A

t=6ms
Diffusive

t=6ms
Ballistic

~ t=18ms
N Ballistic

t=18ms
Diffusive

0 10 20 30 40 O 10 20 30 40
N (segment #) N (segment #)

FIG. 3. The autocorrelation functions (solid curves, experi-
ment; dot-dashed curves, theory) at # = 6 ms and t = 18 ms for
ballistic motion (0.04 mm segment length) and diffusive mo-
tion (0.20 mm segment length).
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FIG. 4. Evolution of the width at half-maximum of the
autocorrelation function with respect to the propagation
time ¢. Curves A and C correspond to ballistic motions with
step lengths of 0.20 and 0.04 mm, respectively. Curve B
corresponds to a random walk with a 0.20 mm step length.

demonstration experiment was performed with four 30-
mm-long fish inside a 0.55-liter aquarium. The same
400 kHz transducers were used. From the plateau in g,
a mean free time of 1.81 ms was found, corresponding to
a scattering cross section per fish of 51 mm?. In Fig. 5, the
autocorrelation function at # = 3 ms is plotted. To inter-
pret these data, Eq. (3) must be modified to account for
the presence of several scatterers whose motions can be
considered independent. In the limit of a large number of
scatterers compared to the scattering order m, g(lm)(A T) is
equal to ( [’ C(Ar)Par(Ar)dAr)™. At the earliest times,
the experimental autocorrelation function appears to have
negative curvature (see Fig. 5), suggesting that the motion
is ballistic (cf. Fig. 3). Even though the resolution is rather
poor, a ballistic fit with a fish speed of 15 mm/s seems to
be consistent with the data. At longer times, the curve has
opposite curvature, and a 3D random walk with D =
0.70 mm?/s gives an excellent fit to the experimental
data. The 0.14 mm mean free path of the fish motion
that is extracted from the these two quantities is remark-
ably small. In fact, fish are very complex scatterers: they
are anisotropic and can rotate, and their shape changes as
they move. All these effects accelerate a lot the decay of
the autocorrelation function and therefore reduce the fish
mean free path.

In conclusion, we have used ultrasonic waves to inves-
tigate the fluctuations of the wave field due to the motion
of scatterers inside a static reverberant cavity. We have
also developed a theory, in the limit of large scattering
mean free path compared to the largest cavity dimension,
that gives an excellent description of the experimental
results, thus elucidating the physics of wave propagation
under these conditions. By showing how the field auto-
correlation function depends on the scattering mean free
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FIG. 5. Autocorrelation function recorded for four zebra
fishes. The solid line corresponds to experimental data, the
dashed curve is a fit to the theory for 3D diffusive motion with
D = 0.70 mm?/s, and the dot-dashed curve is a fit to ballistic
motion with v = 15 mm/s. The inset zooms in on the behavior
at early times.

path of the waves and motion of the scatterers, we have
demonstrated the principles of a new technique in field
fluctuation spectroscopy, diffusing reverberant acoustic
wave spectroscopy (DRAWS). Since waves in reverberant
media play an important role not only in acoustics but in
other areas of physics (e.g., in quantum dots and chaotic
cavities), the range of potential applications of these
results may be very wide.
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